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ABSTRACT

Consider the first-order linear delay differential equation
2'(t) +p(t)z(7(t) =0, t >t (1)
and the second-order linear delay equation
2'(t) + p(&)a(r(H) =0, > o, (2)

where p € C([to, 00), RT), 7 € C([to, ), R), 7(t) is non-decreasing, 7(t) < t for
t >ty and tlimT(t) = 00.

'The most interesting oscillation criteria for Eq.(1), especially in the case where
£ 1 1
0 < liminf p(s)ds < = and limsup/ p(s)ds < 1,
tmee Jra) € tmoo Jr(t)
and for Eq. (2) when
t 1 t
lim inf 7(s)p(s)ds < = and limsup/ T(s)p(s)ds < 1
B Jre) & oo Jr(t)

are presented.
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1 Introduction

The problem of establishing sufficient conditions for the oscillation of all solutions
to the first-order differential equation

z'(t) + p(t)z(T(t)) =0, t > to, (1)
and the second-order equation
z'(t) + p(t)z(7(t)) = 0, t = to, (2)

where p € C([to,00),R*) (here RT = [0,00)), 7 € C([to,c0), R), 7(t) is non-
decreasing, 7(t) < t for t > tp and lim;_., 7(f) = oo, has been the subject of
many investigations. See, for example, [1-65] and the references cited therein.

By a solution of Eq.(1) [resp. Eq.(2)] we understand a continuously differ-
entiable function defined on [7(7}),00) for some Ty > to and such that Eq.(1)
[resp. Eq.(2)] is satisfied for ¢ > Tp. Such a solution is called oscillatory if it has
arbitrarily large zeros, and otherwise it is called nonoscillatory.

In this paper our main purpose is to present the state of the art on the
oscillation of all solutions to Eq.(1) especially in the case where

t ¢
0 < lim inf p(s)ds < = and ]imsup/ p(s)ds < 1,

e Jr(e) ¢ t=eo Jr(t)

and for Eq.(2) when

t it
lim inf T(8)p(s)ds < é and lim sup/ 7(s)p(s)ds < 1.

oo ) t=oo Jr(t)

2 Oscillation Criteria for Eq. (1)

In this section we study the delay equation
Z'(t) +p(t)z(7(t)) =0, t=>to. (1)

The first systematic study for the oscillation of all solutions to Eq.(1) was
made by Myshkis. In 1950 [42] he proved that every solution of Eq.(1) oscillates
if

limsup[t — 7(¢)] < oo and ligninf[t - T(t)]li{ninfp(t) > é. (Cy)

t—o00 —0o0 —00
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In 1972, Ladas, Lakshmikantham and Papadakis [33] proved that the same
conclusion holds if

t
A = lim supf p(s)ds > 1. (Cs)
tooo Jr(t)
In 1979, Ladas [32] established integral conditions for the oscillation of Eq.(1)
with constant delay. Tomaras [54-56] extended this result to Eq.(1) with variable
delay. For related results see Ladde [36-38]. The following most general result is
due to Koplatadze and Canturija [25].

If
: 1
o := liminf p(s)ds > =, (Cs)
t—oco (t) [
then all solutions of Eq.(1) oscillate; If
¢ 1
limsup/ p(s)ds < =, (Ny)
bmoe Jalt] g

then Eq.(1) has a nonoscillatory solution.

In 1982 Ladas, Sficas and Stavroulakis [35] and in 1984 Fukagai and Kusano
[13] established oscillation criteria (of the type of conditions (Cs)and (Cs)) for
Eq. (1) with oscillating coefficient p (t).

It is obvious that there is a gap between the conditions (C5) and (C3) when
the limit tlixgo f:(t) p(s)ds does not exist. How to fill this gap is an interesting

problem which has been recently investigated by several authors.

In 1988, Erbe and Zhang [12] developed new oscillation criteria by employing
the upper bound of the ratio z(7(t))/z(t) for possible nonoscillatory solutions
z(t) of Eq.(1). Their result says that all the solutions of Eq.(1) are oscillatory,
if 0<a<?i and

2
A>1-— -Z- (C;;)
Since then several authors tried to obtain better results by improving the upper
bound for z(7(¢))/z(t).
In 1991, Jian [20] derived the condition
2
o
A>1— ——— C.
> 2(1 —_ C€) ) ( 5)
while in 1992, Yu and Wang [63] and Yu, Wang, Zhang and Qian [64] obtained
the condition

l—a—+v1-20—a?

A>1-— 5 : (06)
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In 1990, Elbert and Stavroulakis [8] and in 1991 Kwong [30], using different
techniques, improved (Cj), in the case where 0 < o < 1, to the conditions

1
VAL

InA +1
Aneewl (Cs)
A1
respectively, where ); is the smaller real root of the equation \ = e®*.
In 1994, Koplatadze and Kvinikadze [26] improved (Cj), while in 1998, Philos
and Sficas [45] and in 1999, Zhou and Yu [65] and Jaro$ and Stavroulakis [19]
derived the conditions

A>1-(1- )2 (C7)

and

o? o?
—_— =
A>1 2i—a) 2 1, (Co)
l—a—+vV1—2a—ao? 1
A>1- -(1-—=)%, G
2 ( \/xl-) ( 10)
and
In\+1 l1—-a—+vV1—-2a—a?
A> X - 5 ) (Cu1)
respectively.

Consider Eq.(1) and assume that 7(t) is continuously differentiable and that
there exists § > 0 such that p(7(¢))7'(¢t) > 0p(¢) eventually for all ¢. Under
this additional condition, in 2000, Kon, Sficas and Stavroulakis [22] and in 2003,
Sficas and Stavroulakis [46] established the conditions

111/\1-{-1_1—-05——\/(1~a)2——4@

A>
A1 2

(2.1)

and

A O\

respectively, where
e’ — N\fa—1

= "Tnoe

and

M=1—a—\/(;—a)2—4e_
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Remark 2.1 ([22], [46]) Observe that when 6 = 1, then © = ﬁl;/\’\;lgﬁ-“—l, and
(2.1) reduces to
2
A>2a-+-)\——1, (Cr2)

1

while in this case it follows that M =1—a — £ and (2.2) reduces to

- 1HA1—1+\/5—2A1+2C¥)\1

A
A1

In the case where o = 2, then A; = e, and (Cy3) leads to

V7T —2e
e

A = =~ (0.459987065.

It is to be noted that as @ — 0, then all the previous conditions (Cy) — (Cys)
reduce to the condition (Cs), i.e.

A>1
However, the condition (Ci3) leads to
A>+/3-1=0.732,

which is an essential improvement. Moreover (C3) improves all the above con-
ditions when 0 < o < % as well. Note that the value of the lower bound on A
can not be less than

é ~ 0.367879441.

Thus the aim is to establish a condition which leads to a value as close as possible

to 2. For illustrative purpose, we give the values of the lower bound on A under

these conditions when a = %

(Cy):  0.966166179
(Cs):  0.892951367
(Ce):  0.863457014
(C7):  0.845181878
(Cs):  0.735758882
(Cs):  0.709011646
(Cio):  0.708638892
(Cn1):  0.599215896
(Ci2):  0.471517764
(Ci3):  0.459987065
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We see that the condition (Ci3) essentially improves all the known results in
the literature.

Example 2.1 ([46]) Consider the delay differential equation

1
' (t) + pz(t — gsin® vVt — Eé) =0,

where p >0, ¢ >0 and pg=0.46 — 1. Then

t
1
o = lim inf pds = lim inf p(q sin® i =
t—+c0 pe

bz Jrw)

1
)=
and

b 1 1
A=1lim supf pds = lim sup p(g sin® vVt + 5{;) = pg + = 0.46.
T

t—co {t) t—co

Thus, according to Remark 2.1, all solutions of this equation oscillate. Observe
that none of the conditions (Cy4)-(Ci2) apply to this equation.

Following this historical (and chronological) review we also mention that in

the case where
t
/ p(s)ds >
T(2)

this problem has been studied in 1995, by Elbert and Stavroulakis [9], by Koza-
kiewicz [28], Li [40,41] and in 1996, by Domshlak and Stavroulakis [6].

t
and lim p(s)ds = L

=0 Jr(e) e

® | =

3 Oscillation Criteria for Eq. (2)

In this section we study the second-order delay equation
z"(t) + p(t)z(r(t)) = 0, t = to, (2)

For the case of ordinary differential equations, i.e. when 7(¢) = ¢, the history
of the problem began as early as in 1836 by the work of Sturm [47] and was
continued in 1893 by A. Kneser [21]. Essential contribution to the subject was
made by E. Hille, A. Wintner, Ph. Hartman, W. Leighton, Z. Nehari, and others
(see the monograph by C. Swanson [48] and the references cited therein). In
particular, in 1948 E. Hille [17] obtained the following well-known oscillation
criteria. Let e

lim suptf p(s)ds > 1 @.1)

t

t—o0
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or

t—o0

+co
]jminft/ p(s)ds > i, (3.2)
t

the conditions being assumed to be satisfied if the integral diverges. Then Eq.(2)
with 7(¢) =t is oscillatory.

For the delay differential equation (2) earlier oscillation results can be found
in the monographs by A. Myshkis [43] and S. Norkin [44]. In 1968 P. Waltman
[57] and in 1970 J. Bradley [1] proved that (2) is oscillatory if

/+mp(t)dt = +4o00.

Proceeding in the direction of generalization of Hille’s criteria, in 1971 J. Wong
[60] showed that if 7(t) > at fort > 0 with 0 < « < 1, then the condition

+oo
o il
hﬂg}fﬁft p(s)ds > o (3.3)

is sufficient for the oscillation of Eq.(2). In 1973 L. Erbe [10] generalized this
condition to

=

without any additional restriction on 7. In 1987 J. Yan [61] obtained some
general criteria improving the previous ones.

An oscillation criterion of different type is given in 1986 by R. Koplatadze
[23] and in 1988 by J. Wei [59], where it is proved that Eq.(2) is oscillatory if

+oo
1i{ninft/ @p(s)ds = E (3.4)
—00 ¢

t
limsupf T(s)p(s)ds > 1 (Cq)
tooo Jr(y
or
% 1
lim inf 7(s)p(s)ds > -. (Cs)
= Sy €

The conditions (Cs)" and (Cj3)’ are analogous to the oscillation conditions

t
A= 1imsup/ p(s)ds > 1, (Cs)
t=oo Jr(y
k 1
a = lim inf p(s)ds > = (Cs)
oo Jr) €

respectively, for the first order delay equation

z'(t) + p(t)z(7(¢)) = 0. (1)
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The essential difference between (3.3),(3.4) and (C5)’, (C3)’ is that the first
two can guarantee oscillation for ordinary differential equations as well, while the
last two work only for delay equations. Unlike first order differential equations,
where the oscillatory character is due to the delay only, the equation (2) can be
oscillatory without any delay at all, i.e., in the case 7(¢) = t. Figuratively speak-
ing, two factors contribute to the oscillatory character of Eq.(2): the presence
of the delay and the second order nature of the equation. The conditions (3.3),
(3.4) and (C3)’, (C3) illustrate the role of these factors taken separately.

In what follows it will be assumed that the condition

/ Oo7'(.9)1!}(5)035 = +00 (3.5)

is fulfilled. As it follows from Lemma 4.1 in [24], this condition is necessary for
Eq.(2) to be oscillatory. The study being devoted to the problem of oscillation
of Eq.(2), the condition (3.5) does not affect the generality.

In this section oscillation results are obtained for Eq. (2) by reducing it to a
first order equation. Since for the latter the oscillation is due solely to the delay,
the criteria hold for delay equations only and do not work in the ordinary case.

Theorem 3.1 ([27]) Let (3.5) be fulfilled and the differential inequality

7(t)

'(t) + (T(t) + éf(f)P(é)dﬁ) p()z(r(t)) <0

T

have no eventually positive solution. Then Eq. (2) is oscillatory.

Theorem 3.1 reduces the question of oscillation of Eq.(2) to that of the absence
of eventually positive solutions of the differential inequality

7(2)

T

z'(t) + (T(t) + fT(ﬁ)p(é)d§> p()z(7(¢)) < 0. (3.6)

So oscillation results for first order delay differential equations can be applied
since the oscillation of the equation

u'(t) + g(t)u(b(¢)) =0 (3.7)
is equivalent to the absence of eventually positive solutions of the inequality
uw'(t) + g(t)u(8(t)) < 0. (38)

This fact is a simple consequence of the following comparison theorem deriving
the oscillation of (3.7) from the oscillation of the equation

V'(t) + h(t)v(o(t)) = 0. (3.9)
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We assume that g, : Ry — R, are locally integrable, §,c : R, — R are
continuous, §(t) < ¢, o(t) < t for t € R., and 6(¢) — +oo, o(t) — +oo as
t — +oo.

Theorem 3.2 Let
g(t) > h(t) and 6(t) <o(t) fort e R,
and let the equation (3.9) be oscillatory. Then (3.7) is also oscillatory.

Corollary 3.1 Let the equation (3.7) be oscillatory. Then the inequality
(3.8) has no eventually positive solution.

Turning to applications of Theorem 3.1, we will use it together with the
criteria (Cs) and (Cj3) to get

Theorem 3.3 ([27]) Let

t 7(s)
K= limsup/t) (T(S) + g §T(§)p(§)d§) p(s)ds > 1, (e

t—o0 (

or
t

7(s)
k := lim inf (T(s)+ : §T(£)p(£)d§) p(S)ds>é- (Cs)”

= Jry)

Then Eq. (2) is oscillatory.

To apply Theorem (3.1) it suffices to note that: (i) (3.5) is fulfilled since
otherwise k = K = 0; (ii) since 7(t) — +o00 ast — +o00, the relations (C,)", (C3)”
imply the same relations with 0 changed by any T' > 0.

Remark 3.1 ([27]) Theorem 3.3 improves the criteria (C,)’, (Cs)’ by Ko-
platadze [23] and Wei [59] mantioned above. This is directly seen from (C5)”, (Cs)”
and can be easily checked if we take 7(t) = t—7g and p(t) = po/(t—70) for t > 27,
where the constants 7o > 0 and py > 0 satisfy

< 1
T =
0Po &

In this case neither of (C5)', (C3)' is applicable for Eq. (2) while both (Cs)”, (Cs)"
give the positive conclusion about its oscillation. Note also that this is exactly
the case where the oscillation is due to the delay since the corresponding equation
without delay is nonoscillatory.

Remark 3.2 ([27]) The criteria (C2)”, (C3)" look like (C3), (Cs) but there
is an essential difference between them pointed out in the introduction. The
condition (Cs) is close to the necessary one since according to [25] if A < 1, then
(3.7) is nonoscillatory. On the other hand, for an oscillatory equation (2) without
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delay we have k = K = 0. Nevertheless, the constant 1/e in Theorem 3.3 is also
the best possible in the sense that for any € € (0,1/e] it can not be replaced by
1/e — € without affecting the validity of the theorem. This is illustrated by the
following

Example 3.1 ([27]) Let £ € (0,1/e], 1—ec < B8 < 1, 7(t) = at and
p(t) = B(1— B)aPt~2, where o = 1. Then (Cs)” is fulfilled with 1/e replaced
by 1/e —e. Nevertheless Eq. (2) has a nonoscillatory solution, namely u(t) = t°.
Indeed, denoting ¢ = B(1 — B)a™”, we see that the expression under the limit
sign in (Cs)” is constant and equals ac [Ina| (1+ac) = (8/e)(1+(B(1-28))/e) >
Ble>1/e—ce.

Note that there is a gap between the conditions (C)”,(C3)” when 0 < k& <
1/e, k < K. In the case of first order equations the conditions (Cy) - (Cy3)
attempt to fill this gap. Using results in this direction, one can derive various
sufficient conditions for the oscillation of Eq. (2). According to Remark 3.1,
neither of them can be optimal in the above sense but, nevertheless, they are of
interest since they cannot be derived from other known results in the literature.
We combine Theorem 3.1 with the result ([19], Corollary 1) to obtain

Theorem 3.4 ([27]) Let K and k be defined by (Cs)",(C3)", 0 < k < 1/e

e 1 1k VIR
k) 2
where A(k) is the smaller root of the equation A = exp(k)). Then Eq. (2) is
oscillatory.
Note that the condition (Ci;)’ is analogous to the condition (Ci;).

K>k+

(Cu)'
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